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The stability of equilibrium of mechanical systems driven by dissipative, gyroscopic, conservative and 

non-conservative positional forces is investigated. Proofs are presented of several general theorems of an 

asymptotic nature, which state whether the systems in question are stable for sufficiently large values of the 

appropriate parameter. It is sometimes possible to specify bounds on the parameters that guarantee 

asymptotic stability or instability of equilibrium. An example is presented. 

THE QUESTION of the effect of dissipative, gyroscopic and conservative forces on the stability of 
motion of a mechanical system is determined by the Kelvin-Chetayev theorems [l]. The presence of 
non-conservative positional forces considerably complicates the situation and precludes direct 
application of the theorems. An examination of the effect of non-conservative positional forces on 
the stability of equilibrium may be found, e.g. in [2-121. 

1. The equations of motion of a mechnical system driven by dissipative, gyroscopic, conservative 
and non-conservative positional forces may be reduced to the form 

s”+Bz’+hGz’+Kz+Fz=X (3, z’) (1.1) 

where x = (x1, . . , xn), B = BT, G T = -G, K = KT, FT = -F are constant matrices representing 
the dissipative, gyroscopic, conservative and non-conservative position forces, respectively, 
X(x, x’) stands for terms of at least second order in x, x’ and h >O is a scalar parameter. 

We will study the stability of the equilibrium state 

x=0, x*=0 (1.2) 

We may assume without loss of generality that B = diag(bl , . . . , b,). 

Theorem 2. If the potential energy xTKx has a maximum at the equilibrium position, 12 is even and 
the dissipation coefficients bi (i = 1, . . . , n) are sufficiently large, then the equilibrium is unstable. 

The proof is based on investigating the characteristic equation A(A) = 
det [Eh* + (B + hG) A + K + F] = 0 (E is the identity matrix). Let us calculate the coefficient of A in 
the equation A(A) = 0, which is A’(O). Using the rule for the differentiation of determinants, we 
obtain 

(k,, fij, gij are the elements of the matrices K, F and G, respectively). Expand each determinant in 
terms of its ith ri>w. One of the terms in the sum will be bidet (Ki+ Fi), where Ki and Fi are the 
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matrices obtained from K and F by deleting the ith row and ith column. The matrices Ki , Fj are of 
order n - 1, which is odd, all the eigenvalues of K, are negative, and F; is skew-symmetric. The 
determinant of the sum of these matrices is negative, det (& -t- Fi) < 0 (i = 1, . . . , n) [6]. Therefore, 
if the b;s are sufficiently large, then A’(O)<O, which implies the existence of a root of the 
characteristic equation with positive real part. We note that A’(0) can be made negative even if only 
one dissipation coefficient bi is sufficiently large, i.e. the proof of Theorem 1 remains valid in the 
case of partial dissipation. 

Let det G # 0, det Ff 0 and assume that the dissipation is total. 

theorem 2. If the matrices P= Q+KG-GK (Q = GTF-tFTG) and A = GTGB+BGTG are 
positive definite, then for sufficiently large h the equilibrium state (1.2) of system (1.1) is 
asymptotically stable. 

To prove this we consider the following function, which is positive definite for sufficiently large h : 

V=xeT (PG+h-‘K)s’+z’ (‘/,G*G+h-*KZ)z- 

- 2h-‘x=Cx’, C=FG-KG+‘/& (1.3) 

The derivative of this function with respect to time along the flow of system (1.1) is 

‘Ir=-s’=[A+la-?R-h-‘Q]z’- 

-“l,h-‘xTx+Zh-‘xr (CB+h-‘FK)x’+ (1.4) 

+2t” (G=G+~-z~)X-2h-ixrCX 

R=RBSBK 

which, under the assumptions of Theorem 2, is negative definite. Indeed, the quadratic part of V‘ is 
-x’~(A + h-*R - h-‘Q)x. - Wi-‘xrPx + 2hK1.xTSx*. Since A and P are positive definite matrices, 
it follows that for sufficiently large h this quadratic form is negative definite. 

Corollary. If there are no conservative forces (K = 0), the equilibrium state (1.2) is asymptotically 
stable for sufficiently large h, provided that the matrices Q and A are positive definite. 

For systems with two degrees of freedom (n = 2), the positive definiteness of Q reduces to the 
inequality gf>O (where g, fare the elements of G and F). On the other hand, the coefficient of h in 
the characteristic equation is 2gf Hence it follows that for systems with n = 2 the positive 
definiteness of Q is a necessary condition for asymptotic stability. 

We will consider system (1.1) without conservative forces (K = 0), with a positive factor b >O 
multiplying the matrix of dissipative forces: 

z”-tbUs’+Gz’+Fz=X(s, 3’) (1.5) 

Theorem 3. If the matrix G TB-l F+ FTB-’ G is positive definite, then for sufficiently large b the 
equilibrium state (1.2) of system (1.5) is asymptotically stable. 

Consider the function 

~~b-‘(x’+Gx)~B-‘(~~+G~)$-b-‘z’=x*~2xrx’+bxfBx 

The derivative V’ along the flow of system (1.5) is 

Ir’= -2~‘~Bz’--b-‘s~ {G’U-‘F+FfB-‘G)x+2b-‘zf( F+FR-‘)s’+ 

(14 

+26-‘(x’+Gr)‘A-‘X+2b-‘z’fX+2xrX Cl.71 

Under the assumptions of Theorem 3, the function (1.7) is negative definite. It can be shown that 
for sufficiently large b the function (1.6) is positive definite. 

Transform variables by x, X*-U, V: u = X* + Gx, v = X* + bx. This converts (1.6) to 

I’=b-1[ul(B+B-l-E)u+vTBv-2uT(B-E)u+O(b-1)1, limO(b-‘)=O 
b-r.- 
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The principal diagonal minors of the matrix of the quadratic form uT(B + B-’ - E)u + vTBv - 2uT(B - E)v 
are: Al = al, . . . , A,, = u1u2 . . . a,,, A,,+1 = a2. . . anbl, 

A *+2 “JO* . . . anb,b:, . . . A,,=b,bx . t. b, 

B-d& (b,, e .I) br), ai=ba+bTJl-f 

It follows that (1.6) is indeed positive definite for sufficiently large b. 
If Q is not a positive definite matrix, the equilibrium state (1.2) of system (1.6) may be unstable. 

Theorem 4. If the matrix & + bBF- bFB is negative definite, the equilibrium state (1.2) of system 
(1 S) is unstable. 

To prove this, we consider the indefinite function 

V=z’(bE--G)s’+‘/,sf( 6*B~-G’-b(G&BG) 15 (1.8) 

The derivative V’ along the flow of system (1.5) is 

V=bx”Bx’-‘J,xr(Q+bBF-bFB)xfsT(bB-G)X 

Under the assumptions of Theorem 4, the function (1.8) satisfies the conditions of Lyapunov’s 
instability theorem. 

We will now consider a system in which the matrix F appears together with a scalar factor f > 0: 

x”+Bs’+Gx’+Kx+fFx=X(x, z’) (1.9) 

Theorem 5. If detFf0, then for sufficiently large f the equilibrium state (1.2) of system (1.9) is 
unstable, regardless of the dissipative, gyroscopic and conservative forces. 

Consider the indefinite function 

The derivative V,’ along the flow of system (1.9) is 

V’=x’zr’+fx~~rFx-~~(G+FB+FG)z’-xf(K+FK)~+rr(E+F)X (1.10) 

which, under the assumptions of Theorem 5, is positive definite. 
Let us assume that the only forces acting on our mechanical system are conservative forces and 

non-conservative positional forces. The equations of the perturbed motion in normal coordinates, 
to a first approximation are 

x”+Kx+Fx=O, K=diag (A,, . , . , A,,) (1.11) 

Supposethath,>O(i=l,..., n) and that no two of these numbers are equal. We may assume 
without loss of generality that X1 > AZ > . . . > A,. The present author [lo] established the following 
condition for the equilibrium state (1.2) of system (1.11) to be stable: 

t\FlJc’I,t (~,+A,)2+2~,sl~~-*/?i~*+h,,) (1.12) 

Theorem 6. ifs is sufficiently large, the equilibrium of system (I. 11) is stable. 
This follows from inequality (1.12). 
Let A,, =O, but Al>&>. . . > A,_1 >O. Define the norm of the matrix F by its last row: 

PII = If*1 I + * + . + L-1 I. 

Theorem 7. If JIFI~ is sufficiently large, the equilibrium of system (1.11) is stable. 
This follows from the stability condition for the equilibrium of system (1.11) in the case A,, = 0 

(inequality (2.10) in [lo]). Th e same inequality also implies an upper bound for )/F/I, below which 
the equilibrium state (1.2) wilf be stable. 
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2. The statements of Theorems 2, 3 and 5 and the corollary to Theorem 2 are asymptotic in 
nature. It is clearly important to find lower bounds for the scalar parameters h, b and Sin Eqs (1. l), 
(1.5) and (1.9), b a ove which the equilibrium state (1.2) are asymptotically stable or unstable. To 
that end we will use the functions V constructed in the proofs of the theorems. As we have 
throughout adopted a unified approach, it will suffice to demonstrate the derivation of such bounds 
for h and f only (Theorems 2 and 5). 

We first return to Theorem 2 and determine a lower bound for h, above which the equilibrium 
state (1.2) of system (1.1) is asymptotically stable. Let g,, , k, , k. be the least eigenvalues of GTG 
and K, respectively, and the eigenvalue of K of least absolute value. The function (1.3) satisfies the 
inequalities 

2V~Zx'r((G'G+h-ZK)x'+ nx7x-4h-‘xrCx’=2s’T [GTG+h-r(K-2rr-‘CZC) lx’+ 
+y’yaZ[&,+h-*(k,-2u-‘c.) ]x”‘x’+yTy (2.1) 

We have used the notation 

y=a’“x-2h-“a-“C~‘. n=g,4-2h-‘li,2 

and denoted the largest eigenvalue of CrC by cl. The function V is positive definite provided that 

rp, (h)=go2hh+ (2kti2g,+g,k,-Zc,) h2+2k,k,*>0 (2.2) 

If this inequaiity holds for any h >O. the function (1.3) will be positive definite. Otherwise it will be 
positive definite for h > hi, where hl is the largest positive root of the equation ‘pj (h) = 0. The 
quadratic part of V’, which has the form of (1.4), satisfies the inequalities 

-V,‘~‘/,h-‘poxTx-h-‘xfC,x*+x*T(A-h-’Q+h-2R)x~= 
zz’/&-‘( ~I(I”~x_~,,-‘~~C~‘)f(~U”x-~o-‘“C~c’) +x’r[ A-h-IQ+&-ZR- 

-‘f,p@-VPC,TC,-- p,e-lh-’ ~~,r~K-KF~,) -2po-‘h-aKF’FKjx’> 
&‘/,k-’ ( po”~x_p,,-‘!~ CUX’)T (p,,%x- po-“C,x’) + 

+[b,-h-‘(~,+‘/2~o-L~Z)+h-Zk2-2~J-*h-af,]x’Tx’, 

C,=C,SZh-‘FK, C,=GB+2FGB-2KGB 

(2.3) 

where R), bl), k2 are the Ieast eigenvalues of the matrices P, A, R + c~,~-~ (KFC, - C,TFK), 
respectively; pI, cz andf, are the largest eigenvalues of the matrices Q, C,7C,, KFTFK. 

It follows from inequalities (2.3) that the function (1.4) will be negative definite provided that 

cpz( h) =2b,poha- (c,+2pop,) hz+2pok,h-4f,>O 

Define ho = max(~, , hz), where h2 is the largest positive root of the equation q+(h) = 0. Then the 
equilibrium state (1.2) of system (1.1) is asymptotically stable for h > htt. 

If K = 0. then h, = (2c,)“*g,,-‘, h2 = (cz + 2p(,p, )/(2bo~,,). 
The derivative V’ defined by (1.10) satisfies the inequality 

V’=(x:‘-il~C2Tx)r (x’--‘/,C,x) +.x’[ fF”F-K-‘I,FK+‘i,KF-“I,CZC,Ilx+ 
$‘xr(E+F)X~(x’-‘J,C,rx)‘(x’-‘f,C,fx)+ (2.4) 

+ (fof--d,-‘l&J xTxfxT(E+F)X, C,=G+FB+FG 

where f. is the least eigenvalue of FTF, do and d, are the largest eigenvalues of CzCzT and 
K + 55 (FK - KF), respectively. 

The follows from inequality (2.4) that V‘ is positive definite for f> (do + 4di )/(4~,). 

3. ExampEe. Let us investigate the stability of a power-driven gyroscopic horizon. A description of this 
mechanical system may be found in [ 131, where the precessional equations of motion of a system mounted on a 
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mobile base were studied. The full equations of perturbed motion of the system on a stationary base may be 
reduced to the form 

.z= (a. j-4 1. g)r (3.1) 

where a and f3 are the angles between the platform and the level plane, y and 6 are the angles of precession of 
each pair of gyroscopes, which are coupled together by antiparallelograms, h is the angular momentum of the 
gyroscope and B is the matrix of dissipative forces obtained when allowance is made for friction in the 
suspension axes of the platform and the gyroscopes. The platform and the gyros are controlled with the help of 
motors, producing non-conservative positional forces, the regulation being such that the matrix Q is positive 
definite. By the Corollary to Theorem 2 the equilibrium position (1.2) of system (3.1) is asymptotically stable 
for sufficiently large h. 

I wish to thank V. V. Rumyantsev and the participants in his seminar for discussions of this 

research. 

REFERENCES 

1. CHETAYEV N. G., Stability of Motion. Nauka, Moscow, 1965. 

2. METELITSYN I. I., On the question of gyroscopic stabilization. Dokl. Akad. Nuuk SSSR 86, 1, 31-34. 1952. 

3. ZIEGLER H., Linear elastic stability. ZAMP4, 2, 89-121, 1953. 
4. WALKER J. A., On the stability of linear discrete dynamic systems. Trans. ASME, Ser. E, Appl. Mech. 37,2,271-275, 

1970. 
5. FRIK M., Zur Stabilitat nichtkonservativer lineare Systeme. ZAMM 52, 47-49. 1972. 
6. MERKIN D. R., Gyroscopic Systems. Nauka, Moscow, 1974. 

7. LAKHADANOV V. M., On the effect of the structure of forces on the stability of motion. Prikl. Mat. Mekh. 38, 2, 
246253, 1974. 

8. MULLER P. S., Stabilitiit and Matrizen. Springer, Berlin, 1977. 

9. KOSHLYAKOV V. N., The theory of the stability of non-conservative systems. In Navigation and Control, pp. 3-10. 
Inst. Mat. Akad. Nauk UkrSSR, Kiev, 1982. 

10. AGAFONOV S. A., The stability of non-conservative systems. Izv. Akad. Nauk SSSR. MTTNo. 1, 47-51, 1986. 

11. KARAPETYAN A. V., The stability of non-conservative systems. Vestnik Moskov. Gos. Univ., Ser. I: Matematika, 
Mekhanika No. 4, 109-113, 1975. 

12. GONCHARENKO V. I., Stabilization of the motion of an unstable mechanical linear system. Prikl. Mekh. 26,4,7Y-85, 
1990. 

13. ROITENBERG Ya. N., Gyroscopes. Nauka, Moscow, 1966. 

Translated by D.L. 


